In the era of big data, processing and generating large datasets across distributed systems can be challenging. Enter MapReduce, a programming model that simplifies distributed data processing. Developed at Google by Jeffrey Dean and Sanjay Ghemawat, MapReduce enables scalable and fault-tolerant data handling by abstracting the complexities of parallel computation, data distribution, and fault recovery. Let’s explore how this transformative approach works and why it has been so impactful.