Listen

Description

To most data scientists, the jupyter notebook is a staple tool: it’s where they learned the ropes, it’s where they go to prototype models or explore their data — basically, it’s the default arena for their all their data science work. 

But Joel Grus isn’t like most data scientists: he’s a former hedge fund manager and former Googler, and author of Data Science From Scratch. He currently works as a research engineer at the Allen Institute for Artificial Intelligence, and maintains a very active Twitter account

Oh, and he thinks you should stop using Jupyter noteoboks. Now. 

When you ask him why, he’ll provide many reasons, but a handful really stand out:

Overall, Joel’s objections to Jupyter notebooks seem to come in large part from his somewhat philosophical view that data scientists should follow the same set of best practices that any good software engineers would. For instance, Joel stresses the importance of writing unit tests (even for data science code), and is a strong proponent of using type annotation (if you aren’t familiar with that, you should definitely learn about it here). 

But even Joel thinks Jupyter notebooks have a place in data science: if you’re poking around at a pandas dataframe to do some basic exploratory data analysis, it’s hard to think of a better way to produce helpful plots on the fly than the trusty ol’ Jupyter notebook. 

Whatever side of the Jupyter debate you’re on, it’s hard to deny that Joel makes some compelling points. I’m not personally shutting down my Jupyter kernel just yet, but I’m guessing I’ll be firing up my favorite IDE a bit more often in the future.