Listen

Description

Immer wieder wird darüber diskutiert, was denn das Verhalten unserer Hunde beeinflusst. Dabei stehen meist Genetik sowie Umwelteinflüsse im Fokus. Allerdings gibt es etwas, das man "Epigenetik" nennt.

Deshalb versuche ich in dieser Folge, Epigenetik zu erklären und aufzuzeigen, wie diese denn genau "funktioniert". Wie beeinflusst Epigenetik das Verhalten? Wie hängt das mit Genetik und der Umwelt zusammen?

QUELLEN

Auton, Adam, et al. "Genetic recombination is targeted towards gene promoter regions in dogs." PLoS genetics 9.12 (2013): e1003984.

Awalt, Samantha L., et al. "A dog's life: Early life histories influence methylation of glucocorticoid (NR3C1) and oxytocin (OXTR) receptor genes, cortisol levels, and attachment styles." Developmental Psychobiology 66.3 (2024): e22482.

Banlaki, Zsofia, et al. "DNA methylation patterns of behavior-related gene promoter regions dissect the gray wolf from domestic dog breeds." Molecular Genetics and Genomics 292 (2017): 685-697.

Belyaev, Dmitri K., A. O. Ruvinsky, and L. N. Trut. "Inherited activation-inactivation of the star gene in foxes: its bearing on the problem of domestication." Journal of Heredity 72.4 (1981): 267-274.

Cimarelli, Giulia, et al. "Social behavior of pet dogs is associated with peripheral OXTR methylation." Frontiers in psychology 8 (2017): 549.

Coppinger, Raymond, and Mark Feinstein. How dogs work. University of Chicago Press, 2020

Ekwall, Karl, et al. "Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres." Cell 91.7 (1997): 1021-1032.

Holliday, Robin, and John E. Pugh. "DNA Modification Mechanisms and Gene Activity During Development: Developmental clocks may depend on the enzymic modification of specific bases in repeated DNA sequences." Science 187.4173 (1975): 226-232.

Jacobsen, Steven E., and Elliot M. Meyerowitz. "Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis." Science 277.5329 (1997): 1100-1103.

Janowitz Koch, Ilana, et al. "The concerted impact of domestication and transposon insertions on methylation patterns between dogs and grey wolves." Molecular ecology 25.8 (2016): 1838-1855.

Li, Enke, et al. "DNA methylation, genomic imprinting, and mammalian development." Cold Spring Harbor symposia on quantitative biology. Vol. 58. Cold Spring Harbor Laboratory Press, 1993.

McClintock, Barbara. "The origin and behavior of mutable loci in maize." Proceedings of the National Academy of Sciences 36.6 (1950): 344-355.

Mohandas, T., R. S. Sparkes, and L. J. Shapiro. "Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation." Science 211.4480 (1981): 393-396.

Muller, Hans J. "Types of visible variations induced by X-rays in Drosophila." Journal of genetics 22 (1930): 299-334.

Riggs, Arthur D. "X inactivation, differentiation, and DNA methylation." Cytogenetic and Genome Research 14.1 (1975): 9-25.

Ruefenacht, Silvia, et al. "A behaviour test on German Shepherd dogs: heritability of seven different traits." Applied Animal Behaviour Science 79.2 (2002): 113-132.

Sundman, Ann-Sofie, et al. "DNA methylation in canine brains is related to domestication and dog-breed formation." PLoS One 15.10 (2020): e0240787.

Waddington, Conrad H. "Canalization of development and the inheritance of acquired characters." Nature 150.3811 (1942): 563-565.

Waterland, Robert A., and Randy L. Jirtle. "Transposable elements: targets for early nutritional effects on epigenetic gene regulation." Molecular and cellular biology 23.15 (2003): 5293-5300.

Weaver, Ian CG, et al. "Epigenetic programming by maternal behavior." Nature neuroscience 7.8 (2004): 847-854.

Yamazaki, Jumpei, et al. "Obese status is associated with accelerated DNA methylation change in peripheral blood of senior dogs." Research in veterinary science 139 (2021): 193-199.

DAS TREUHUNDBÜRO

⁠⁠⁠⁠⁠Zur Website⁠⁠⁠⁠⁠

⁠⁠⁠⁠⁠Zum Instagram-Profil