Listen

Description

Welcome to episode 4 of EigenLayer Unlocked, for a focus into the final frontier of Ethereum scaling: Inexpensive and lightning fast zk proof verification.

In todayโ€™s presentation, we break down how ZK proofs allow us to compress complex computations into small, verifiable proofs, drastically reducing the need for re-execution across Ethereum. We were joined by Diego Kingston of Aligned Layer to explain how this helps solve one of Ethereumโ€™s biggest challenges: scaling while keeping proof verification costs managable.

One of the core ideas we discussed is proof recursion, where multiple proofs can be bundled together into one, reducing verification overhead and making onchain processes more efficient.

We also explore how EigenLayer plays into this, enabling projects to offload proof verification from Ethereumโ€™s main layer to a more specialized layer without sacrificing security. This allows Ethereum to avoid bottlenecks and avoid competing for block space, all while keeping costs lower and scaling higher.

ZK verification might seem like a niche area, but itโ€™s rapidly becoming a foundational piece of infrastructure for onchain apps which want to benefit from the security guarantees of validity proofs, as well as EigenLayer.

Lets dive in.

Website: https://therollup.co/

Spotify: https://open.spotify.com/show/1P6ZeYd..

Podcast: https://therollup.co/category/podcast

Follow us on X: https://www.x.com/therollupco

Follow Rob on X: https://www.x.com/robbie_rollup

Follow Andy on X: https://www.x.com/ayyyeandy

Join our TG group: https://t.me/+8ARkR_YZixE5YjBh

The Rollup Disclosures: https://therollup.co/the-rollup-discl

๐——๐—œ๐—ฆ๐—–๐—Ÿ๐—”๐—œ๐— ๐—˜๐—ฅ: ๐˜๐˜ฏ๐˜ท๐˜ฆ๐˜ด๐˜ต๐˜ช๐˜ฏ๐˜จ ๐˜ช๐˜ฏ ๐˜ค๐˜ณ๐˜บ๐˜ฑ๐˜ต๐˜ฐ๐˜ค๐˜ถ๐˜ณ๐˜ณ๐˜ฆ๐˜ฏ๐˜ค๐˜บ ๐˜ข๐˜ฏ๐˜ฅ ๐˜‹๐˜ฆ๐˜๐˜ช ๐˜ฑ๐˜ญ๐˜ข๐˜ต๐˜ง๐˜ฐ๐˜ณ๐˜ฎ๐˜ด ๐˜ค๐˜ฐ๐˜ฎ๐˜ฆ๐˜ด ๐˜ธ๐˜ช๐˜ต๐˜ฉ ๐˜ช๐˜ฏ๐˜ฉ๐˜ฆ๐˜ณ๐˜ฆ๐˜ฏ๐˜ต ๐˜ณ๐˜ช๐˜ด๐˜ฌ๐˜ด ๐˜ช๐˜ฏ๐˜ค๐˜ญ๐˜ถ๐˜ฅ๐˜ช๐˜ฏ๐˜จ ๐˜ต๐˜ฆ๐˜ค๐˜ฉ๐˜ฏ๐˜ช๐˜ค๐˜ข๐˜ญ ๐˜ณ๐˜ช๐˜ด๐˜ฌ, ๐˜ฉ๐˜ถ๐˜ฎ๐˜ข๐˜ฏ ๐˜ฆ๐˜ณ๐˜ณ๐˜ฐ๐˜ณ, ๐˜ฑ๐˜ญ๐˜ข๐˜ต๐˜ง๐˜ฐ๐˜ณ๐˜ฎ ๐˜ง๐˜ข๐˜ช๐˜ญ๐˜ถ๐˜ณ๐˜ฆ ๐˜ข๐˜ฏ๐˜ฅ ๐˜ฎ๐˜ฐ๐˜ณ๐˜ฆ. ๐˜ˆ๐˜ต ๐˜ค๐˜ฆ๐˜ณ๐˜ต๐˜ข๐˜ช๐˜ฏ ๐˜ฑ๐˜ฐ๐˜ช๐˜ฏ๐˜ต๐˜ด ๐˜ต๐˜ฉ๐˜ณ๐˜ฐ๐˜ถ๐˜จ๐˜ฉ๐˜ฐ๐˜ถ๐˜ต ๐˜ต๐˜ฉ๐˜ช๐˜ด ๐˜ค๐˜ฉ๐˜ข๐˜ฏ๐˜ฏ๐˜ฆ๐˜ญ, ๐˜ธ๐˜ฆ ๐˜ฎ๐˜ข๐˜บ ๐˜ฆ๐˜ข๐˜ณ๐˜ฏ ๐˜ข ๐˜ค๐˜ฐ๐˜ฎ๐˜ฎ๐˜ช๐˜ด๐˜ด๐˜ช๐˜ฐ๐˜ฏ ๐˜ฐ๐˜ณ ๐˜ง๐˜ฆ๐˜ฆ ๐˜ข๐˜ด ๐˜ข ๐˜ด๐˜ฑ๐˜ฐ๐˜ฏ๐˜ด๐˜ฐ๐˜ณ๐˜ด๐˜ฉ๐˜ช๐˜ฑ, ๐˜ช๐˜ง ๐˜ต๐˜ฉ๐˜ช๐˜ด ๐˜ช๐˜ด ๐˜ต๐˜ฉ๐˜ฆ ๐˜ค๐˜ข๐˜ด๐˜ฆ ๐˜ธ๐˜ฆ ๐˜ธ๐˜ช๐˜ญ๐˜ญ ๐˜ข๐˜ญ๐˜ธ๐˜ข๐˜บ๐˜ด ๐˜ฎ๐˜ข๐˜ฌ๐˜ฆ ๐˜ด๐˜ถ๐˜ณ๐˜ฆ ๐˜ช๐˜ต ๐˜ช๐˜ด ๐˜ค๐˜ญ๐˜ฆ๐˜ข๐˜ณ. ๐˜ž๐˜ฆ ๐˜ข๐˜ณ๐˜ฆ ๐˜ด๐˜ต๐˜ณ๐˜ช๐˜ค๐˜ต๐˜ญ๐˜บ ๐˜ข๐˜ฏ ๐˜ฆ๐˜ฅ๐˜ถ๐˜ค๐˜ข๐˜ต๐˜ช๐˜ฐ๐˜ฏ๐˜ข๐˜ญ ๐˜ค๐˜ฐ๐˜ฏ๐˜ต๐˜ฆ๐˜ฏ๐˜ต ๐˜ฑ๐˜ญ๐˜ข๐˜ต๐˜ง๐˜ฐ๐˜ณ๐˜ฎ, ๐˜ฏ๐˜ฐ๐˜ต๐˜ฉ๐˜ช๐˜ฏ๐˜จ ๐˜ธ๐˜ฆ ๐˜ฐ๐˜ง๐˜ง๐˜ฆ๐˜ณ ๐˜ช๐˜ด ๐˜ง๐˜ช๐˜ฏ๐˜ข๐˜ฏ๐˜ค๐˜ช๐˜ข๐˜ญ ๐˜ข๐˜ฅ๐˜ท๐˜ช๐˜ค๐˜ฆ. ๐˜ž๐˜ฆ ๐˜ข๐˜ณ๐˜ฆ ๐˜ฏ๐˜ฐ๐˜ต ๐˜ฑ๐˜ณ๐˜ฐ๐˜ง๐˜ฆ๐˜ด๐˜ด๐˜ช๐˜ฐ๐˜ฏ๐˜ข๐˜ญ๐˜ด ๐˜ฐ๐˜ณ ๐˜ญ๐˜ช๐˜ค๐˜ฆ๐˜ฏ๐˜ด๐˜ฆ๐˜ฅ ๐˜ข๐˜ฅ๐˜ท๐˜ช๐˜ด๐˜ฐ๐˜ณ๐˜ด.