Il confronto con i dati di precisione delle SNe Ia e delle BAO conferma la coerenza del modello con le osservazioni. Il parametro di distorsione $b$, pur suggerendo una deviazione non nulla dal $ΛCDM$ al livello $1σ$, rimane indistinguibile al livello $2σ$, indicando che i dati attuali non sono ancora sufficientemente stringenti per decretare un vincitore.
Gli sviluppi futuri della ricerca dovranno concentrarsi su:
Confronto Quantitativo con i Dati: Ottimizzare i parametri del modello attraverso un fit congiunto e preciso dei dati di SNe Ia, BAO e CMB.
Analisi delle Perturbazioni: Studiare la crescita delle strutture cosmiche per confrontare le previsioni del modello con le osservazioni della struttura su larga scala. Poiché i modelli $f(R)$ influenzano la formazione delle strutture, la misurazione accurata della crescita della materia, ad esempio attraverso lo lensing gravitazionale o le indagini sulla velocità peculiare, potrebbe fornire il "test di crescita" che finalmente distingue questi modelli dal $ΛCDM$.
Unificazione Concettuale: Continuare a esplorare l'ipotesi che la gravità modificata possa offrire una spiegazione unificata per la dinamica dell'universo, risolvendo simultaneamente i problemi dell'energia oscura e della materia oscura.
In sintesi, il modello $f(R)=R+\alpha R^2$ rappresenta un'ipotesi profonda e prescientifica che anticipa la ricerca contemporanea sulla gravità modificata. Il suo potenziale di spiegare l'accelerazione cosmica e, forse, anche la dinamica delle galassie, senza ricorrere a misteriose componenti esotiche, lo rende un candidato affascinante per un'evoluzione del nostro modello cosmologico standard.
Un'alternativa alla materia oscura: Formalizzazione matematica dell'intuizione dei "Super-Gravitoni" di Marco Saba
https://www.academia.edu/144067224/Unalternativa_alla_materia_oscura_Formalizzazione_matematica_dellintuizione_dei_Super_Gravitoni_di_Marco_Saba