In this episode, we hear from Romain Lopez and Gabriel Misrachi about
scVI—Single-cell Variational Inference.
scVI is a probabilistic model for single-cell gene expression data that
combines a hierarchical Bayesian model with deep neural networks encoding the
conditional distributions. scVI scales to over one million cells and can be
used for scRNA-seq normalization and batch effect removal, dimensionality
reduction, visualization, and differential expression. We also
discuss the recently implemented in scVI automatic hyperparameter selection
via Bayesian optimization.
Links:
If you enjoyed this episode, please consider supporting the podcast on Patreon.