In this episode, I talk with Irineo Cabreros about causality. We discuss why
causality matters, what does and does not imply causality, and two
different mathematical formalizations of causality: potential outcomes and
directed acyclic graphs (DAGs). Causal models are
usually considered external to and separate from statistical models, whereas
Irineo’s new paper shows how causality can be viewed as a relationship between
particularly chosen random variables (potential outcomes).
Links:
If you enjoyed this episode, please consider supporting the podcast on Patreon.