Seventy3:借助NotebookLM的能力进行论文解读,专注人工智能、大模型、机器人算法方向,让大家跟着AI一起进步。
进群添加小助手微信:seventy3_podcast
备注:小宇宙
Summary
This paper addresses the challenge of selecting the best large language models (LLMs) for each component within compound AI systems. Recognizing that different LLMs excel at different sub-tasks, the authors introduce LLMSelector, a framework that efficiently identifies high-performing model allocations. LLMSelector iteratively evaluates and assigns LLMs to individual modules based on estimated module-wise performance. Experiments on various compound systems, utilizing models like GPT-4o and Claude 3.5, demonstrate that LLMSelector achieves significant accuracy gains compared to using a single LLM throughout. Ultimately, the research highlights the importance of strategic model selection for optimizing the overall effectiveness of complex AI systems.
本文聚焦于复合型AI系统中如何为各个组件选择最合适的大型语言模型(LLMs)这一关键挑战。鉴于不同LLMs在子任务上的表现各有优劣,作者提出了 LLMSelector 框架,用于高效识别并分配性能优异的模型到各个模块。LLMSelector通过迭代评估模块级性能,智能地将不同模型分配给最合适的任务模块。
在多个复合系统的实验中,研究使用了如GPT-4o和Claude 3.5等模型,结果表明,LLMSelector相较于统一使用单一模型的方法,在准确性上取得了显著提升。该研究强调了战略性模型选择对于优化复杂AI系统整体效果的重要性,为提升多模型系统的协同效能提供了有力思路。
原文链接:https://arxiv.org/abs/2502.14815