你有没有想过,AI要如何像高手一样,同时“试驾”多种思路?我们又该如何给狂飙的AI装上“定速巡航”,让它在学习时永不“翻车”?今天,我们就从几篇最新的AI论文出发,聊一聊AI要如何学会“分身术”思考,如何跳出“思维定式”的陷阱,甚至,我们以后可能再也不用费劲地给AI设定KPI,直接“说人话”就能让它们完美协作。准备好了吗?让我们一起探索AI思考方式的深层变革。
00:00:35 如何像高手一样思考?答案可能在“分身术”里
00:05:07 给狂飙的AI装上定速巡航
00:09:57 思维定式是怎么炼成的?AI给了我们一个新答案
00:15:23 怎么让AI大模型学会“左右互搏”?
00:21:37 AI界的“KPI”革命,未来我们不用再跟机器打哑谜
本期介绍的几篇论文:
[CL] Multiplex Thinking: Reasoning via Token-wise Branch-and-Merge
[Microsoft Research & University of Pennsylvania]
https://arxiv.org/abs/2601.08808
---
[LG] Controlled LLM Training on Spectral Sphere
[Microsoft Research Asia & Renmin University]
https://arxiv.org/abs/2601.08393
---
[LG] Rewarding the Rare: Uniqueness-Aware RL for Creative Problem Solving in LLMs
[MIT & NUS]
https://arxiv.org/abs/2601.08763
---
[LG] Reverse Flow Matching: A Unified Framework for Online Reinforcement Learning with Diffusion and Flow Policies
[MIT]
https://arxiv.org/abs/2601.08136
---
[LG] The End of Reward Engineering: How LLMs Are Redefining Multi-Agent Coordination
[New York University & Lerna AI]
https://arxiv.org/abs/2601.08237