The UK plans to require registration for drones over 250 grams, a study looks at drone strikes on aircraft windscreens, a transformable UAV is under development, Airbus tested their Sagitta demonstrator, some DJI Sparks are experiencing a problem, and draft Technical Standard Orders win AOPA approval.
UAV News
Drone registration is coming to the UK, along with drone safety awareness tests. This will apply to drones over 250 grams. Operators may be able to register online or with an app. The government also plans for expanded use of geofencing in the UK.
The summary report from the Department for Transport, British Airline Pilots’ Association, and the Military Aviation Authority says drones weighing 400 grams could damage windscreens. Airliner windscreens were found to be more resistant than helicopter windscreens.
The Small Remotely Piloted Aircraft Systems (drones): Mid-Air Collision Study [PDF] was conducted by QinetiQ and Natural Impacts using laboratory collision testing and computer modelling. The study aimed to find the lowest speed at collision where critical damage could occur to aircraft components. Critical damage was defined in this study to mean major structural damage of the aircraft component or penetration of drone through the windscreen into the cockpit. The study indicated that:
- Non-birdstrike certified helicopter windscreens have very limited resilience to the impact of a drone, well below normal cruise speeds.
- The non-birdstrike certified helicopter windscreen results can also be applied to general aviation aeroplanes which also do not have a birdstrike certification requirement.
- Although the birdstrike certified windscreens tested had greater resistance than non-birdstrike certified, they could still be critically damaged at normal cruise speeds.
- Helicopter tail rotors are also very vulnerable to the impact of a drone, with modelling showing blade failures from impacts with the smaller drone components tested.
- Airliner windscreens are much more resistant, however, the study showed that there is a risk of critical windscreen damage under certain impact conditions: It was found that critical damage did not occur at high, but realistic impact speeds, with the 1.2 kg class drone components. However, critical damage did occur to the airliner windscreens at high, but realistic, impact speeds, with the 4 kg class drone components used in this study.
- The construction of the drone plays a significant role in the impact of a collision. Notably, the 400 g class drone components, which included exposed metal motors, caused critical failure of the helicopter windscreens at lower speeds than the 1.2 kg class drone components, which had plastic covering over their motors. This is believed to have absorbed some of the shock of the collision, reducing the impact.
- The testing and modelling showed that the drone components used can cause significantly more damage than birds of equivalent masses at speeds lower than required to meet birdstrike certification standards.
A team of students at