Listen

Description

Try a walking desk to stay healthy while you study or work!

Full notes at  ocdevel.com/mlg/18 

Overview: Natural Language Processing (NLP) is a subfield of machine learning that focuses on enabling computers to understand, interpret, and generate human language. It is a complex field that combines linguistics, computer science, and AI to process and analyze large amounts of natural language data.

NLP Structure

NLP is divided into three main tiers: parts, tasks, and goals.

1. Parts

Text Pre-processing:

2. Tasks

Syntactic Analysis:

3. Goals

High-Level Applications:


NLP Evolution and Algorithms

Evolution:

Key Algorithms:


Career and Market Relevance

NLP offers robust career prospects as companies strive to implement technologies like chatbots, virtual assistants (e.g., Siri, Google Assistant), and personalized search experiences. It's integral to market leaders like Google, which relies on NLP for applications from search result ranking to understanding spoken queries.


Resources for Learning NLP

  1. Books:

    • "Speech and Language Processing" by Daniel Jurafsky and James Martin: A comprehensive textbook covering theoretical and practical aspects of NLP.
  2. Online Courses:

    • Stanford's NLP YouTube Series by Daniel Jurafsky: Offers practical insights complementing the book.
  3. Tools and Libraries:

    • NLTK (Natural Language Toolkit): A Python library for text processing, providing functionalities for tokenizing, parsing, and applying algorithms like Naive Bayes.
    • Alternatives: OpenNLP, Stanford NLP, useful for specific shallow learning tasks, leading into deep learning frameworks like TensorFlow and PyTorch.

NLP continues to evolve with applications expanding across AI, requiring collaboration with fields like speech processing and image recognition for tasks like OCR and contextual text understanding.