Listen

Description

Explains language models (LLMs) advancements. Scaling laws - the relationships among model size, data size, and compute - and how emergent abilities such as in-context learning, multi-step reasoning, and instruction following arise once certain scaling thresholds are crossed. The evolution of the transformer architecture with Mixture of Experts (MoE), describes the three-phase training process culminating in Reinforcement Learning from Human Feedback (RLHF) for model alignment, and explores advanced reasoning techniques such as chain-of-thought prompting which significantly improve complex task performance.

Links

Transformer Foundations and Scaling Laws

Emergent Abilities in LLMs

Architectural Evolutions: Mixture of Experts (MoE)

The Three-Phase Training Process

Advanced Reasoning Techniques

Optimization for Training and Inference