Listen

Description

Slow dashboards, runaway cloud costs, and broken KPIs aren’t usually tooling problems—they’re data modeling problems. In this episode, I break down the four most damaging data modeling mistakes that silently destroy performance, reliability, and trust at scale—and how to fix them with production-grade design patterns. If your analytics stack still hits raw events for daily KPIs, struggles with unstable joins, explodes rows across time ranges, or forces graph-shaped problems into relational tables, this episode will save you months of pain and thousands in wasted spend. 🔍 What You’ll Learn in This Episode

🛠 The 4 Data Modeling Mistakes Covered 1️⃣ Skipping Cumulative Tables Why daily KPIs should never be recomputed from raw events—and how pre-aggregation stabilizes performance, cost, and governance. 2️⃣ Broken Fact Table Design How unclear grain, missing surrogate keys, and lack of partitioning create duplicate revenue, unstable joins, and exploding cloud bills. 3️⃣ Time Modeling with Row Explosion Why expanding date ranges into one row per day destroys efficiency—and how period-based modeling with date arrays fixes it. 4️⃣ Forcing Graph Problems into Relational Tables Why fraud, recommendations, and network analysis break SQL—and when graph modeling is the right tool. 🎯 Who This Episode Is For🚀 Why This Matters Most pipelines don’t fail because jobs crash—they fail because they’re:This episode shows how modeling discipline—not tooling hype—is what actually keeps pipelines fast, cheap, and reliable. ✅ Core Takeaway Shift compute to design-time. Encode meaning into your data model. Remove repeated work from the hot path. That’s how you scale data without scaling chaos.

Become a supporter of this podcast: https://www.spreaker.com/podcast/datascience-show-podcast--6817783/support.

I share practical AI leadership notes on LinkedIn — the kind you can forward internally or reuse in executive discussions.
Follow Mirko on LinkedIn if you want decision-ready frameworks, not hype.