podcast
details
.com
Print
Share
Look for any podcast host, guest or anyone
Search
Showing episodes and shows of
Barbara Bredner
Shows
Irgendwas mit Daten - Datenanalyse in der Industrie
#50 Die Weibull-Verteilung
DIE Verteilung bei Zuverlässigkeit & Lebensdauer-Analysen Die Weibull-Verteilung 👉 Woher kommt die Weibullverteilung? 👉 Wie wird die Weibullverteilung bestimmt? 👉 Was sind typische Kennzahlen der Weibull-Verteilung? Bei der Zuverlässigkeits- und Lebensdauer-Analyse wird die Weibull-Verteilung zur Beschreibung des Ausfallverhaltens eingesetzt. Hierfür werden Kennzahlen wie Ausfallsteilheit und charakterstische Lebensdauer aus den Daten ermittelt. Oft werden auch bestimmte Kenngrößen wie die B10-Lebensdauer gefordert. In dieser Folge erfahren Sie, warum die Weibull-Verteilung gar nicht von Waloddi Weibull stammt. Es geht um Methoden, mit denen die Parameter der Weibull-Verteilung wie charakteristische Lebensdauer und Ausfallsteilheit ermittelt werden können...
2022-04-21
17 min
Irgendwas mit Daten - Datenanalyse in der Industrie
#49 Zuverlässigkeit und Lebensdauer
Wie belastbar sind Komponenten und Produkte? Zuverlässigkeit & Lebensdauer 👉 Was können Verfahren für Zuverlässigkeit & Lebensdauer? 👉 Wie entsteht die Badewannen-Kurve? 👉 Was sind Besonderheiten von Zuverlässigkeits-Tests? Methoden aus dem Bereich Zuverlässigkeit & Lebensdauer sind spezielle Auswertungsverfahren, mit denen die Haltbarkeit von Bauteilen, Produkten oder Systemen bewertet wird. Oft wird hierbei die so genannte Badewannenkurve als Modell für das Ausfallverhalten zu unterschiedlichen Zeitpunkten im Produktlebenszyklus verwendet. Daten aus dem Bereich Zuverlässigkeit und Lebensdauer haben einige Besondernheite wie beispielsweise geringe Anzahl bei gleichzeitig hoher Anforderung an die Aussagekraft der Analysen. ...
2022-04-14
19 min
Irgendwas mit Daten - Datenanalyse in der Industrie
#48 Was sind wichtige Schritte in der DoE
Von der Problemstellung über die Prozessbeschreibung zur Auswertung & Nutzung Was sind wichtige Schritte in der DoE? 👉 Womit fängt die DoE an? 👉 Welche Vorarbeiten sind notwendig bzw. sinnvoll? 👉 Wann ist ein Versuchsplan zu wenig? Viele Menschen denken bei der statistischen Versuchsplanung und -auswertung (Design of Experiments, DoE) zuerst daran, dass der Versuchsplan gut gewählt sein muss. Das stimmt, doch bevor es um die Auswahl und Erstellung eines geeigneten Versuchsplans geht, sind andere Schritte zur Vorbereitung notwendig. In dieser Folge erhalten Sie Informationen zu den ersten Schritten sowie zu sinnvollen und notwendigen...
2022-04-07
21 min
Irgendwas mit Daten - Datenanalyse in der Industrie
#47 In Ordnung oder nicht in Ordnung, das ist hier die Frage!
Kennzahlen für die Modell-Quaität bei attributiven Zielgrößen (Klassifizierung) In Ordnung oder nicht in Ordnung, das ist hier die Frage! 👉 Wie funktioniert die Bewertung der Erklär-Qualität bei attributiven Zielgrößen (gut/schlecht)? 👉 Was ist die Konfusionsmatrix? 👉 Welche Kennzahlen werden für die Erklär-Qualität bei der Klassifizierung eingesetzt? Vor der Nutzung von Modellen zum Beispiel für die Optimierung von Versuchs- oder Prozess-Einstellungen sollte immer die Aussagekraft oder Erkär-Qualität bewertet werden. In dieser Folge erfahren Sie, mit welchen Kennzahlen Machine Learning Modelle evaluiert werden, die eine attributive Zielgröße...
2022-03-31
25 min
Irgendwas mit Daten - Datenanalyse in der Industrie
#46 Wie gut funktionieren Machine Learning Modelle
Kennzahlen für die Modell-Quaität bei messbaren Zielgrößen (Regression) Wie gut funktionieren Machine Learning Modelle? 👉 Welche Qualitäts-Kriterien gibt es für Machine Learning? 👉 Wie wird Erklär-Qualität bei der Regression bewertet? 👉 Wann ist die Anpassungsgüte R² groß genug? Ein Modell mit Methoden des maschinellen Lernens wie z. B. Regression oder Klassifikation zu bauen ist einfach. Solche Modelle können uns beispielsweise optimale Arbeitspunkte liefern oder dabei helfen nachzuweisen, dass die Anforderungen in einem bestimmten Prozessfenster erfüllt werden. Bevor ein Modell produktiv genutzt wird, sollten Sie zuerst prüfen, ob das...
2022-03-24
25 min
Irgendwas mit Daten - Datenanalyse in der Industrie
#45 Wie funktioniert Einfluss-Analyse bei nicht-normalverteilten Ergebnissen?
warum "normal-verteilt" eher nicht normal ist Wie funktioniert Einfluss-Analyse bei nicht-normalverteilten Ergebnissen? 👉 Warum ist das Ergebnis nicht normal-verteilt? 👉 Wie funktionieren verallgemeinerte lineare Modelle (GLM: Generalized Linear Models)? 👉 Sind Machine Learning Modelle auch GLMs? Die Normalverteilung von Messwerten wird für viele Methoden vorausgesetzt und sie scheint oft "das Normalste" von der Welt zu sein - bis echte Messwerte aufgenommen werden. Die sind selten normalverteilt und damit stellt sich schnell die Frage, warum die Messwerte nicht aus einer "normalen" Verteilung kommen. Mögliche Antworten darauf erhalten Sie in der aktuellen Folge. Außerdem geht e...
2022-03-17
21 min
Irgendwas mit Daten - Datenanalyse in der Industrie
#44 Korrelation, Regression, ANOVA - Alles das Gleiche?
Unterschiede und Gemeinsamkeiten bei der Zusammenhangs- und Einfluss-Analyse Korrelation, Regression und ANOVA - alles das Gleiche? 👉 Woher kommen Korrelation und Regression? 👉 Woher kommt die Varianzanalyse (ANOVA)? 👉 Was sind die Gemeinsamkeiten von ANOVA und Regression? Wenn Korrelation, Regression und Varianzanalyse (ANOVA, Analysis Of Variance) das Gleiche wären, bräuchten wir keine unterschiedlichen Namen für die drei Verfahren - oder? Die Unterschiede sind tatsächlich eher historisch gewachsen und liegen weniger in den Unterschieden zwischen den Verfahren selbst. Klassischerweise wurde die Regression verwendet, wenn die Einflussgrößen messbar oder variabel sind, z. B. Temperatu...
2022-03-10
25 min
Irgendwas mit Daten - Datenanalyse in der Industrie
#43 Datenvisualisierungen & Tools
Bunte Bildchen sind super - oder etwa nicht? Datenvisualisierungen & Tools 👉 Warum verwenden wir Visualisierungen? 👉 Wie finde ich die "richtige" Visualisierung? 👉 Was ist das beste Tool für Datenvisualsierungen? "1 Bild sagt mehr als 1000 Worte." Dieser Satz ist absolut abgegriffen und trifft trotzdem den Nagel auf den Kopf: Wir Menschen können Informationen aus Bildern deutlich schneller aufnehmen und länger behalten als Text-Informationen. Alle Informationen in Bilder zu packen ist trotzdem nicht sinnvoll und wie gut eine Daten-Visualisierung funktioniert, hängt von vielen Aspekten ab. Diese Folge liefert Ihnen Informationen dazu, wie Sie die beste...
2022-03-03
20 min
Irgendwas mit Daten - Datenanalyse in der Industrie
#42 Wie sinnvoll sind Digitalisierung & Automatisierung in der Datenanalyse?
Wie aus unbegrenzten Möglichkeiten gezielte Aktionen werden Wie sinnvoll sind Digitalisierung & Automatisierung in der Datenanalyse? 👉 Warum ist Digitalisierung & Automatisierung in der Datenanalyse wichtig? 👉 Wie sinnvoll ist die Digitalisierung von Daten? 👉 Wie hilfreich ist die Automatisierung bei der Datenauswertung? Wir schreiben das Jahr 2022. Unendliche Möglichkeiten in der Digitalisierung liegen vor uns. Bei der Automatisierung in der Datenanalyse können wir (fast) alles realisieren. Bald wird jede Analyse auf Knopfdruck, oder noch besser einfach so voll automatisiert da sein. Wir müssen nur noch das auswählen und anschauen, was wir brauchen. So weit sind...
2022-02-24
23 min
Irgendwas mit Daten - Datenanalyse in der Industrie
#41 Signifikant gleich - geht das überhaupt?
Warum sich Gleichheit nicht beweisen lässt signifikant gleich - geht das überhaupt? 👉 Warum können wir keine Gleichheit beweisen? 👉 Wie funktioniert der Äquivalenz-Nachweis? 👉 Wofür können wir Äquivalenz-Nachweise verwenden? Sie wollen (oder müssen) zeigen, dass etwas gleich ist. Nichts leichter als das, oder? Wir nehmen einen statistischen Test und haben dann signifikante Gleichheit bewiesen. Das geht so aus mehreren Gründen nicht, die in dieser Folge erklärt werden. Außerdem erhalten Sie Hinweise darauf, wie Sie den Nachweis für "gleich genug" oder äquivalent machen können. Literatur 👉 Wel...
2022-02-17
19 min